icebound

neutrinos

Francis Halzen
University of Wisconsin
http://icecube.wisc.edu
IceCube Deployment

IceTop
Air shower detector
Threshold ~ 300 TeV

22 strings
1320 digital modules
52 surface detectors

2004-2005: 1 string
First data in 2005
First upgoing muon: July 18, 2005

InIce
planned 80 strings of 60 optical modules each
17 m between modules
125 m string separation

2005-2006: 8 strings
2006-2007: 13 strings deployed

AMANDA
19 strings
677 modules

Completion by 2011
1 km3·yr reached 2 years before detector is complete (2011)

close to 4 km3·yr at the beginning of 2nd year of full array operation
IceCube
accumulated exposure at 100 TeV

[Graph showing accumulated exposure over time with markers for Antares construction and KM3Net TDR.]
IceCube: interdisciplinary science

- cosmic rays: extragalactic cosmic problem
- TeV gamma ray astronomy: galactic cosmic ray problem
- particle physics: from dark matter to the Planck scale
neutrinos associated with cosmic rays
cosmic rays

Nature accelerates particles 10^7 times the energy of LHC!

where?

how?

Nature accelerates particles 10^7 times the energy of LHC!
galactic and extragalactic cosmic rays

Knee: 1 event km\(^{-2}\) yr\(^{-1}\)

Ankle: extragalactic cosmic rays

All particle spectrum
JACEE[11] ×
Akera[12] ▲
Tien Shan[13] ±
MSU[14] ×
KASCADE[20] *
CASA-BLANCA[19] *
DICE[17] *
HEGRA[18] *
CasaMia[16] *
Tibet[15] *

Fixed target
HERA
RHIC
TEVATRON
LHC

E \(\frac{dN}{dE}\) (GeV cm\(^{-2}\) sr\(^{-1}\) s\(^{-1}\))

\(E^2 \frac{dN}{dE}\) (GeV cm\(^{-2}\) sr\(^{-1}\) s\(^{-1}\))
solar flare shock acceleration

coronal mass ejection → 10 GeV particles
Acceleration to 10^{21} eV?

$\sim 10^2 \text{ Joules}$

$\sim 0.01 M_{\text{GUT}}$

dense regions with exceptional gravitational force creating relativistic flows of charged particles, e.g.

- dense cores of exploding stars
- supermassive black holes
- merging galaxies
active galaxy

- supermassive black hole
- accretion disk
- jet
collapse of massive star produces a gamma ray burst

spinning black hole

highest energy particles
galactic and extragalactic cosmic rays

1 event km$^{-2}$ yr$^{-1}$

Knee

Ankle

extragalactic cosmic rays
flux of extra-galactic cosmic rays

ankle \rightarrow one 10^{19} eV particle per km squared per year per sr

$$E^2 \frac{dN}{dE} = \frac{10^{19} \text{ eV}}{(10^{10} \text{ cm}^2)(3 \times 10^7 \text{ sec}) \text{ sr}}$$

$$= 3 \times 10^{-11} \text{ TeV cm}^{-2} \text{ sec}^{-1} \text{ sr}^{-1}$$
total flux = velocity x density:

\[4\pi \int dE (E \frac{dN}{dE}) = c \rho_E \]

\[\rho_E = \frac{4\pi}{c} \int \frac{3 \times 10^{-11}}{E} dE \frac{TeV}{cm^3} \]

\[\approx \log \frac{E_{\text{max}}}{E_{\text{min}}} \approx 10^{-19} \frac{TeV}{cm^3} \]
energy in extragalactic cosmic rays:
\[\sim 3 \times 10^{-19} \text{erg/cm}^3 \text{ or } \sim 10^{44} \text{erg/yr per (Mpc)}^3 \text{ for } 10^{10} \text{ years} \]

- \(3 \times 10^{39} \text{erg/s per galaxy}\)
- \(3 \times 10^{44} \text{erg/s per active galaxy}\)
- \(2 \times 10^{52} \text{erg per gamma ray burst}\)

\rightarrow \text{energy in cosmic rays ~ equal to the energy in light!}

1 TeV = 1.6 erg
NEUTRINO BEAMS: HEAVEN & EARTH

- Accelerator
- Target
- Proton
- Directional beam
- Magnetic fields
- Neutrino beams

Black Hole

Radiation Enveloping Black Hole

\[p + \gamma \rightarrow n + \pi^+ \]
\[\sim \text{cosmic ray + neutrino} \]
\[\rightarrow p + \pi^0 \]
\[\sim \text{cosmic ray + gamma} \]
energy in extra-galactic cosmic rays:

\[\sim 3 \times 10^{-19} \text{ erg/cm}^3 \text{ or} \]
\[\sim 10^{44} \text{ erg/yr per (Mpc)}^3 \text{ for } 10^{10} \text{ years} \]

3x10^{39} \text{ erg/s per galaxy}
3x10^{44} \text{ erg/s per active galaxy}
2x10^{52} \text{ erg per gamma ray burst}

energy in

\text{cosmic rays} \sim \text{photons} \sim \text{neutrinos}
Waxman-Bahcall Flux

\[\Phi_v = \frac{1}{2} \times \frac{1}{2} \times \Phi_{CR} \times \frac{d_H}{d_{CMB}} \approx \Phi_{CR} \]

oscillations

\[\nu_\mu + \nu_\mu \quad \nu_e + e \]

in \(\pi^+ \) decay
Diffuse muon neutrino flux

\[\Phi E_\nu^2 \text{ [GeV sr}^{-1} \text{s}^{-1} \text{cm}^{-2}] \]

- Atmospheric
- AMANDA-II (1yr)
- MPR (4yr)
- AMANDA (4yr)
- HBL blazars
- Full IceCube, 1 year
- MPR bound
- WB

100 - 500 events per km2 year
• events per km² year:

\[
N = 2\pi \times \text{area} \times \text{time} \times \int \frac{dN}{dE} P_{\nu \rightarrow \mu} dE
\]

\[
\frac{3 \times 10^{-11}}{E} \text{ TeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}
\]

\[
10^{-6} E(\text{TeV})
\]

\[
N \approx 80 \times \log \frac{E_{\nu \text{ max}}}{E_{\nu \text{ min}}} \approx 500 \text{ events}
\]
Active Galaxy

Radiation Field: Ask Astronomers

- energy in protons ~ energy in electrons
- photon target observed in lines
- >> few events per year km²
0 seconds
fireball protons and photons interact

~ 10 seconds
fireball protons interact with remnant of the star

afterwards
afterglow protons interact with interstellar medium

0 seconds
fireball protons and photons interact

PeV

TeV

EeV
cosmic rays interact with the microwave background

\[p + \gamma \rightarrow n + \pi^+ \]

cosmic rays disappear, neutrinos appear

\[\pi \rightarrow \mu + \nu_\mu \rightarrow \{e + \nu_\mu + \nu_e\} + \nu_\mu \]

\[E_\nu \geq 2 \times 10^6 \text{TeV} \]

1 event per kilometer squared per year
GZK event: cosmic ray + cmb photon \rightarrow 10 EeV neutrino
neutrinos associated with TeV gamma rays
Cas A Supernova Remnant in X-rays

Shock fronts

Fermi acceleration when particles gyrate across high B-fields
key issue: magnetic field

Chandra Cassiopeia A

Chandra SN 1006
HESS: RX J1713 Spectrum

18 h 2003 data
supernova
beam
dump

- Dense molecular cloud
- Shock wave
- π^0 decay $\rightarrow \gamma$-rays
- Inverse Compton scattering $\rightarrow \gamma$-rays
- Compressed shell of hot gas

Supernova remnant

RX J1713-3946
TeV photons trace the density of the molecular clouds
cygnus region: Milagro and Tibet

Milagro

- Contours are pion model with no sources.
- Crosses are EGRET unidentified sources.
- TeV/matter correlation is good.
- Chance noncorrelation is 1.5×10^{-6}.

2~4 neutrinos in IceCube per source.
\(\gamma \)’s associated with galactic cosmic rays

A SNR at \(d = 1 \) kpc transfers \(W = 10^{50} \) erg to cosmic rays interacting with molecular clouds with density \(n = 1 \) cm\(^{-3}\)

\[
E \frac{dN_\gamma}{dE}(> 1 \text{ TeV}) = 10^{-11} \frac{ph}{cm^2 s} \frac{W}{10^{50} \text{ erg}} \frac{n}{1 \text{ cm}^3} \left(\frac{d}{1 \text{kpc}} \right)^{-2}
\]

2 SN per century supply the observed density of galactic cosmic rays

E.g. RX J1713.7-3946
\[E_\gamma \frac{dN_\gamma}{dE_\gamma} (> \text{TeV}) = \frac{1}{4\pi d^2} L_\gamma \]

\[L_\gamma = V Q_\gamma = \frac{W}{\rho_{cr}} Q_\gamma \]

- **volume of the remnant**
- **energy in >TeV photons produced by cosmic rays per cm\(^3\) sec**

\[d = 1 \text{kpc} \quad n = 1 \text{cm}^{-3} \quad W = 10^{50} \text{erg} \]
energy in $>\text{TeV}$ photons produced by cosmic rays on density n per cm3 per second

\[Q_\gamma (> \text{TeV}) = \left\langle \frac{E_\gamma}{E_p} \right\rangle \left[\frac{c}{\lambda_{pp\rightarrow \pi}} \right] n_{cr} (E_\gamma) \]

\[\lambda_{pp\rightarrow \pi} = n \sigma_{pp\rightarrow \pi} \text{ and } \rho_{cr}, n_{cr}, Q_\gamma \text{ are energies} \]

\[d = 1 \text{kpc} \quad n = 1 \text{cm}^{-3} \quad W = 10^{50} \text{erg} \]
\[
\langle \frac{E_{\pi}}{E_p} \rangle = 0.2
\]

\[
\rho_{cr} \approx 10^{-12} \text{ erg cm}^{-3}
\]

\[
\sigma_{pp \rightarrow \pi} = 40 \text{ mb} = 4 \times 10^{-26} \text{ cm}^2
\]

\[
n_{cr}(> \text{TeV}) = 4 \times 10^{-14} \text{ TeV cm}^{-2} \text{ s}^{-1}
\]

\[
d = 1 \text{kpc} \quad n = 1 \text{ cm}^{-3} \quad W = 10^{50} \text{ erg}
\]
neutral pions are observed as gamma rays
charged pions are observed as neutrinos

$\nu_\mu \sim \gamma / 2$
ν flux accompanying TeV gammas

\[E \frac{dN_\nu}{dE} (> E) \cong \frac{1}{2} E \frac{dN_\gamma}{dE} (> E) \]

\[= 10^{-11} \frac{\text{nus}}{\text{cm}^2 \text{s}} \text{ Area Time } P_{\nu \rightarrow \mu} \]

\[= 1.5 \ln \left(\frac{E_{\text{max}}}{E_{\text{min}}} \right) \text{ events per km}^2 \text{ per year} \]

a “few” neutrinos
neutrinos: a second look

Milagro

contours are pion model with no sources
crosses are EGRET unidentified sources

TeV/matter correlation
good
chance noncorrelation 1.5×10^{-6}

2-3.5 neutrinos in IceCube per source
injection Q_{cr}

cosmic rays produce pions in interactions with interstellar medium
\[
\frac{dN_\gamma}{dt} = Q_{CR}(E) - \frac{N_\gamma}{\tau(E)}
\]

- $Q_{CR}(E)$ is the injected CR distribution
- $\tau(E)$ is the diffusion time, depends on B
- T is the lifetime of the remnant (1,000 ~ 10,000 years)

\[
N_\gamma(E) = Q_{CR}(E)T \text{ for } \tau \gg T
\]
\[
N_\gamma(E) = Q_{CR}(E)\tau(E) \text{ for } \tau \ll T
\]

evolution of the CR flux in the SN remnant
1000 models ...

Legend:
- Black line: $s = -2.2$, $T = 1400$ years, $B = 0.1 \mu G$
- Red line: $s = -2.2$, $T = 5000$ years, $B = 1 \mu G$
- Green line: $s = -2.2$, $T = 5000$ years, $B = 10 \mu G$
- Blue line: $s = -2.2$, $T = 5000$ years, $B = 50 \mu G$

Egret Flux
- Milagro
AMANDA skyplot 2000-2003

3369 events below horizon
AMANDA neutrinos in galactic coordinates
Galactic Coordinates

Southern Hemisphere Sky

Standard Deviations

30° 210° 90° 65° 210° 90° 65° 30°
particle physics
• in the next 10 years IceCube will observe

\[\sim 10^6 \text{ neutrinos with energies } 0.1—1,000 \text{ TeV} \]
\[\sim 10 \text{ neutrinos with energy } > 10^6 \text{ TeV} \]

made in the interactions of cosmic rays with the Earth’s atmosphere and microwave photons.

• with \(m \sim 0.01 \text{ eV} \) and \(E \sim 100 \text{ TeV} \)
the gamma factor of the neutrino is

\[\gamma = \frac{E_V}{m_V} \approx 10^{16} \]
IceCube: particle physics with one million atmospheric neutrinos

- **Astronomy:** new window on the Universe

- **Physics:**
 - measurement of the high-energy neutrino cross section
 - TeV-scale gravity, quantum decoherence
 - physics beyond 3-flavor oscillations
 - test special and general relativity with new precision
 - search for magnetic monopoles
 - search for neutralino (or other) dark matter
 - search for topological defects and cosmological remnants
 - search for non-standard model neutrino interactions
 - search for leptoquarks
 - ...

quantized space: like traveling through a crystal

\[\lambda \sim \frac{1}{E} \rightarrow 10^{-33} \text{ cm} \]
Lorentz violation: ΔE vs Δt

Violation of Lorentz invariance because of Planck scale physics can be detected through time delays of high energy neutrinos relative to low energy photons from a source at a distance d; for instance a GRB.

energy scale $\approx \frac{d}{c} \frac{\Delta E}{\Delta t} \approx M_{Planck}$
neutrino “astronomy”

violation of Lorentz invariance may be a tool to study Planck scale physics

→ interaction with Planck mass particles distort spacetime

→ Planck scale vacuum fluctuations probed by high energy neutrinos

\[E^2 = p^2 + m^2 \pm E^2 \left(\frac{E}{M_{Planck}} \right)^n \pm \ldots \]

modification to dispersion relation leads to an energy dependent speed of light.
Lorentz violation: ΔE vs Δt

Violation of Lorentz invariance because of Planck scale physics can be detected through time delays of high energy neutrinos relative to low energy photons from a source at a distance d; for instance a GRB.

$$\Delta t \approx \frac{1 + n}{2} \left(\frac{d}{c} \right) \left(\frac{E_v}{\zeta M_{Planck}} \right)^n$$
WIMP capture in the sun
and annihilation in neutrinos

\[\chi + \chi \rightarrow W + W \rightarrow \nu + \nu \]
IceCube: inner core detector

7 IceCube + 18 AMANDA strings
225 DOMs + 540 OM}s
IceCube: the contained event detector

2007 detector: 22 IceCube strings + AMANDA can be divided in veto and fiducial volume
muon vertices of events passing the on-line filter well inside the defined fiducial volume

blue: WIMPS red: background
IceCube contained events

- threshold ~ 50 GeV
- 40,000 atmospheric neutrinos by Christmas
- oscillations, new physics, precision tests, WIMPs ...
a km squared year
data by 2008

2005, 2006, 2007 deployments

- 604 DOMs deployed to date
- Want to achieve steady state of 14 strings / season.
IceCube Collaboration

Bartol Research Inst, Univ of Delaware, USA
Pennsylvania State University, USA
University of Wisconsin-Madison, USA
University of Wisconsin-River Falls, USA
LBNL, Berkeley, USA
UC Berkeley, USA
UC Irvine, USA

Université Libre de Bruxelles, Belgium
Vrije Universiteit Brussel, Belgium
Université de Mons-Hainaut, Belgium
Universiteit Gent, Belgium
Universität Mainz, Germany
DESY Zeuthen, Germany
Universität Wuppertal, Germany
Universität Dortmund, Germany
Humboldt Universität, Germany
Universität Dortmund, Germany
MPI, Heidelberg
Uppsala Universitet, Sweden
Stockholm Universitet, Sweden
Kalmar Universitet, Sweden
Imperial College, London, UK
University of Oxford, UK
Utrecht University, Netherlands

Univ. of Alabama, USA
Clark-Atlanta University, USA
Univ. of Maryland, USA
University of Kansas, USA
Southern Univ. and A&M College, Baton Rouge, LA, USA
Institute for Advanced Study, Princeton, NJ, USA
University of Alaska, Anchorage

University of Canterbury, Christchurch, New Zealand
Chiba University, Japan